INTERMEDIATORY FORMATION OF MESOIONIC IMIDAZOLIUM-4-OXIDES IN THE REACTION OF α -HALOACYL CHLORIDES WITH AMIDINES

Masashi HAMAGUCHI and Toshikazu IBATA*

Department of Chemistry, College of General Education,

Osaka University, Toyonaka, Osaka 560

Reaction of α -haloacyl chlorides with benzamidines in the presence of triethylamine generated mesoionic imidazolium-4-oxides (2b) as intermediates which gave pyrroles on treatment with acetylenic compounds via 1,3-dipolar cycloaddition followed by extrusion of isocyanates.

We have reported the formation of mesoionic 1,3-oxazolium-4-oxide ($\underline{2a}$) by intramolecular carbene-carbonyl reaction in the copper chelate-catalyzed decomposition of diazoimide ($\underline{1a}$). We now wish to describe analogous intramolecular cyclization of α -haloacylamidines ($\underline{1b}$) to give imidazolium-4-oxides ($\underline{2b}$) in the reaction of α -haloacyl chlorides with N,N'-disubstituted benzamidines ($\underline{4}$), and describe that treatment of $\underline{2b}$ with acetylenic dipolarophiles gives pyrroles via cycloaddition and elimination of isocyanates.

In a typical experiment, a mixed solution of two molar amount of N,N'-dimethyl-benzamidine and one molar amount of triethylamine in benzene was added to a benzene solution of α -bromophenylacetyl chloride under vigorous stirring at room temperature. The yellow color developed indicates the formation of anhydro-1,3-dimethyl-2,5-diphenyl-4-hydroxyimidazolium hydroxide (2b). Dimethyl acetylenedicarboxylate (1.5 molar amount) was added to the solution and kept at 80°C until yellow color of mesoionic imidazoliumoxide disappeared. The reaction mixture was separated on column chromatography to give dimethyl 2,5-diphenyl-N-methylpyrrole-3,4-dicarboxylate (78%).

$$\begin{array}{c}
X \\
R_1 - CH - COC1 \\
(3) \\
X = C1 \text{ or Br}
\end{array}$$

$$\begin{array}{c}
- HC1 \\
N - R_2 \\
N - CH - CO \\
N - R_2
\end{array}$$

$$\begin{array}{c}
- HX \\
R_2 - N - R_2 \\
Ph
\end{array}$$

$$\begin{array}{c}
R_1 - CH - CO \\
N - R_2
\end{array}$$

$$\begin{array}{c}
- HX \\
R_2 - N - R_2
\end{array}$$

$$\begin{array}{c}
R_2 - N - R_2 \\
Ph
\end{array}$$

$$\begin{array}{c}
(2b) \\
R_3 - C \equiv C - R_4
\end{array}$$

$$\begin{array}{c}
R_3 - C \equiv C - R_4
\end{array}$$

$$\begin{array}{c}
R_3 - C \equiv C - R_4
\end{array}$$

$$\begin{array}{c}
R_3 - C \equiv C - R_4
\end{array}$$

$$\begin{array}{c}
R_3 - C \equiv C - R_4
\end{array}$$

$$\begin{array}{c}
R_3 - C \equiv C - R_4
\end{array}$$

$$\begin{array}{c}
R_3 - C \equiv C - R_4
\end{array}$$

$$\begin{array}{c}
R_3 - C \equiv C - R_4
\end{array}$$

$$\begin{array}{c}
R_3 - C \equiv C - R_4
\end{array}$$

$$\begin{array}{c}
R_3 - C \equiv C - R_4
\end{array}$$

$$\begin{array}{c}
R_3 - C \equiv C - R_4
\end{array}$$

$$\begin{array}{c}
R_3 - C \equiv C - R_4
\end{array}$$

$$\begin{array}{c}
R_3 - C \equiv C - R_4
\end{array}$$

$$\begin{array}{c}
R_3 - C \equiv C - R_4
\end{array}$$

$$\begin{array}{c}
R_3 - C \equiv C - R_4
\end{array}$$

$$\begin{array}{c}
R_3 - R_1
\end{array}$$

$$\begin{array}{c}
R_3 - R_1
\end{array}$$

$$\begin{array}{c}
R_4 - R_1
\end{array}$$

$$\begin{array}{c}
R_2 - R_2 - R_2 - R_2
\end{array}$$

$$\begin{array}{c}
R_4 - R_1
\end{array}$$

$$\begin{array}{c}
R_4 - R_1$$

$$\begin{array}{c}
R_4 - R_1
\end{array}$$

$$\begin{array}{c}
R_4 - R_1$$

$$\begin{array}{c}
R_4 - R_1
\end{array}$$

$$\begin{array}{c}
R_4 - R_1$$

$$\begin{array}{c}
R_4 - R_1
\end{array}$$

$$\begin{array}{c}
R_4 - R_1$$

Table. Yields and Melting Points of Pyrroles (6)

run	R ₁	R_2	R ₃	R ₄	yield (%)	mp (°C)
a	Ph	Me	COOMe	COOMe	78	147-148
b	Ph	Me	PhCO	PhCO	74	202-203
C	Ph	Me	H	COOMe	65	99-100
đ	Ph	Me	Me	COOMe	38	190-193
е	Ph	Me	Ph	COOMe	42	167-168
f	Ph	Me	H	Ph	25	176-177
g	Ph	Ph	COOMe	COOMe	71	201-202
h	Me	Me	COOMe	COOMe	74	94-95
i	Me	Ph	COOMe	COOMe	54	157-158
j	H	Me	COOMe	COOMe	32	118-119
k	H	Ph	COOMe	COOMe	30	125
1	H	Ph	H	COOMe	57	109-110
m	p-NO2C6H4	Me	COOMe	COOMe	51	163-164

Combination of acid chlorides, amidines and acetylenes gave various pyrroles $(\underline{6})^2$ (see Table). The formation of $(\underline{6})$ may reasonably be explained by the extrusion of isocyanate from the cycloadduct $(\underline{5})$ of acetylene and mesoionic imidazolium-4-oxide $(\underline{2b})$ which was formed by the reaction of acid chloride $(\underline{3})$ and amidine $(\underline{4})$ through $\underline{1b}$. Monocyclic imidazolium-4-oxide having no acyl group at 5-position was described to be unstable 3 and only a few compounds of this type were synthesized. 4 , 5 Attempts to isolate $\underline{2b}$ in pure state in our reaction condition were also unsuccessful. Therefore, modification of reaction conditions is now in progress.

References

- 1) M.Hamaguchi and T.Ibata, Tetrahedron Lett., 4475 (1974).
- 2) All new compounds reported here gave satisfactory elemental analyses, and melting points of 6a, 6b, 6c, 6f and 6h were in good agreement with values in the literature.
- 3) E.B.Roche and D.W.Stansloski, J.Heterocycl.Chem., 7, 139 (1970).
- 4) T.Shiba and H.Kato, Bull.Chem.Soc.Japan, 43, 3941 (1970).
- 5) G.Singh and P.S.Pande, Tetrahedron Lett., 2169 (1974).